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Parameters and distributions

Suppose that X is an n-dimensional random vector with density
determined by a p-dimensional (p < n) parameter θ:

X ∼ p(x|θ).

The parameter θ determines the distribution of X.

In many signal processing applications we need to make some
decision about θ from observations of X, where the density of X
can be one of many in a family of distributions, {p(x|θ)}θ∈Θ,
indexed by different choices of the parameter θ.
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Example: Univariate Gaussian

x =

[
x1

x2

]
, xi ∼ N (θ, 1)

p(x|θ) =

1√
2π
e−(x1−θ)2/2 1√

2π
e−(x2−θ)2/2

=

1

2π
e−‖x−θ1‖

2/2
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Statistically speaking, any information we are interested in gleaning
from x depends only on the p parameters

θ = [θ1, ..., θp]
>.

So, it is natural to ask:

Question

Can we compress the n raw measurements into a lower
dimensional statistic that carries all the useful information in x?

In particular, we want to use this lower dimensional statistic to
estimate θ with the same quality as if we kept all of x.
If so, then to study θ we could discard x and retain only the
compressed statistic.

Goal

Given a family of distributions {p(x|θ)}θ∈Θ and one or more
observations from a particular distribution p(x|θ∗) in this family,
find a data compression strategy that preserves all information
pertaining to θ∗. The function identified by such strategies called a
sufficient statistic.
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Definition: Sufficient statistic

Let X be an n-dimensional random vector and let θ denote a
p-dimensional parameter of the distribution of X. The statistic
t := T (x) is a sufficient statistic for θ if and only if the conditional
distribution of X given T (X) is independent of θ.
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Implications
Let’s see what this implies. Let p(x, t|θ) by the joint density of
(X,T (X)) conditioned on θ, so that

p(x, t|θ) =
{
p(x|θ), t = T (x)
0 otherwise

Then

p(x|θ) = p(x, t ≡ T (x)|θ)
= p(x|t, θ)p(t|θ)
= p(x|t)p(t|θ)

This has the following implications:

1. Parametrization of the probability law of X is manifested
completely in p(t|θ).

2. Any inference strategy based on x can be replaced by an
algorithm based on t without loss in accuracy.

3. Information in x regarding θ is contained in t.
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Example: Binary Information Source (Scharf p. 78)

Sequence of independent, identically distributed Bernoulli r.v. used
to model a communication signal.

x = [x1, x2, ..., xN ]
>

Each bit xn ∈ {0, 1};

p(xn = 1) = θ

p(xn = 0) = 1− θ

p(xn|θ) = θxn(1− θ)1−xn
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Example: (cont.)

Joint probability mass function of X is:

p(x|θ) =
N−1∏
n=0

θxn(1− θ)1−xn

= θk(1− θ)n−k

where k =
∑N−1

n=0 xn ← count how many ”1”s

The probability mass function of the number of 1’s occurring in N
independent Bernoulli trials is binomial:

p(k|θ) =
(
N

k

)
︸ ︷︷ ︸

number of sequences
w/ k ”1”s occurring

θk(1− θ)N−k︸ ︷︷ ︸
prob. that k ”1”s occur
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Example: (cont.)

The joint probability (or mass function) of x and k is

p(x, k|θ) =
{
p(x|θ) if k ”1”s inx
0 else

From this we obtain

p(x|k, θ) =
p(x, k|θ)
p(k|θ)

=
θk(1− θ)N−k(
N
k

)
θk(1− θ)N−k

=
1(
N
k

)
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Example: (cont.)

I Conditional pmf p(x|k, θ) does not depend on θ!

I This reveals that given k, the full observation x brings no
additional discriminating information about θ.

I We say that the conditional distribution of x given k is
independent of θ.

I Dependence of a random sample on parameter θ is completely
carried on k

I To make inferences about θ, we only need to save k, due to
the number of ”1”s in x
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Fisher-Neyman Factorization Theorem

Working out the above conditional distributions can be challenging
in practice, making it difficult to find sufficient statistics directly.
The following theorem helps us verify sufficient statistics more
readily.

Fisher-Neyman Factorization Theorem

Let X be a discrete random vector with pmf p(x|θ). The statistic
t = T (x) is sufficient for θ if and only if

p(x|θ) = a(x)bθ(t)

for some functions a which depends on x but not θ and b which
depends on θ but not x except through t.
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Lots of examples

Example: Data itself

x is a sufficient statistic

p(x|θ) = 1︸︷︷︸
a(x)

· p(x|θ)︸ ︷︷ ︸
bθ(x)

Example: Bernoulli trials revisited

p(x|θ) =

1︸︷︷︸
a(x)

· θk(1− θ)n−k︸ ︷︷ ︸
bθ(k)

⇒

k is sufficient for θ
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Example: Poisson

Suppose X1, ..., XN are iid Poisson random variables:

p(xn|λ) = e−λ
λxn

xn!
, λis parameter

and we measure x = [x1, ..., xN ]
>. Then

p(x|λ) =

N∏
n=1

e−λ
λxn

xn!

=

e−Nλ · λ
∑N
n=1 xn︸ ︷︷ ︸

bλ(t)

N∏
n=1

1

xn!︸ ︷︷ ︸
a(x)

⇒

L =
∑N

n=1 xn, the total number of counts ⇒ sufficient for λ
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Example: Uniform

Suppose x = [x1, ..., xN ]
> are samples from a uniform density on

the interval [a, b]. What is a sufficient statistic for θ = [a b]> ?

p(x|θ) =
N∏
i=1

p(xi|θ) =
N∏
i=1

1

b− a
I[a,b](xi)

N∏
i=1

I[a,b](xi) =

{
1, if a ≤ xi ≤ b for all i

0, otherwise

=

{
1, if mini xi ≥ a and maxi xi ≤ b
0, otherwise

p(x|θ) = 1︸︷︷︸
a(x)

1

(b− a)N
I[a,∞)(min

i
xi)I(−∞,b](max

i
xi)︸ ︷︷ ︸

bθ(t)

t =

[
mini xi
maxi xi

]
is a 2d sufficient statistic
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Proof of Fisher-Neyman factorization theorem

(If / Sufficiency)

Assume p(x|θ) = a(x)bθ(t)

p(t|θ) =
∑

x:T (x)=t

p(x|θ)

=

 ∑
x:T (x)=t

a(x)

 bθ(t)

p(x|t, θ) =
p(x, t|θ)
p(t|θ)

=
p(x|θ)
p(t|θ)

=
a(x)bθ(t)∑

x:T (x)=t a(x)bθ(t)

(Only if / Necessity)

Assume p(x|t, θ) = p(x|t)

p(x|θ) = p(x|t)︸ ︷︷ ︸
a(x)

· p(t|θ)︸ ︷︷ ︸
bθ(t)
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Example: Gaussian observations

Let x1, ..., xN be independent observations from a N (µ, σ2)
distribution and define x = [x1, ..., xN ]

>, θ = [µ, σ2]>.

p(x|θ) =

N∏
n=1

1√
2πσ2

e−(xn−µ)2/2σ2

= (2πσ2)−N/2e−
∑N
n=1−(xn−µ)2/2σ2

Define the statistics:

µ̂ =
1

N

N∑
n=1

xn

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2
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Example: (cont.)

p(x|θ) =(2πσ2)−N/2 exp

{
N∑
n=1

− 1

2σ2
(xn − µ̂+ µ̂− µ)2

}
=(2πσ2)−N/2

· exp

{
− 1

2σ2

N∑
n=1

(xn − µ̂)2 + 2(xn − µ̂)(µ̂− µ) + (µ̂− µ)2
}

and note that:

N∑
n=1

(xn − µ̂)(µ̂− µ) = (µ̂− µ)
N∑
n=1

(xn − µ̂)

= (µ̂− µ)

(
N∑
n=1

xn −
N∑
n=1

µ̂

)
=

(µ̂− µ)(Nµ̂−Nµ̂) = 0
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Example: (cont.)

p(x|θ) = (2πσ2)−
N
2 exp

{
− 1

2σ2

N∑
n=1

(xn − µ̂)2
}

× exp

{
− 1

2σ2

N∑
n=1

(µ̂− µ)2
}

=

(2πσ2)−
N
2 exp

{
− 1

2σ2
Nσ̂2

}
× exp

{
− 1

2σ2

N∑
n=1

(µ̂− µ)2
}

=

1 · bθ(t), t =
[
µ̂

σ̂2

]

Therefore

[
µ̂

σ̂2

]
is a sufficient statistic for

[
µ
σ2

]
.
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Example: Gaussian Vector Observations (Scharf, p. 83)

If X1, ..., XM are iid N (µ,R), then

µ =
1

M

M∑
n=1

xn = “Sample Mean”

and

R̂ =
1

M

M∑
n=1

(xn − m̂)(xn − m̂)> = “Sample Covariance”

are sufficient statistics for (µ,R).
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Sufficient Statistics and Signal Subspace Models
For H ∈ Rn×p, θ ∈ Rp×1, suppose we observe a signal

s = Hθ

in noise
w ∼ N (0, R) :

x = Hθ + w

What is the minimal (lowest dimensional) sufficient statistic for θ?

⇒ Try to factorize the density of the observation.

p(x|θ) =
1

(2π)n/2
1

|R|1/2
exp

{
−1

2
(x−Hθ)>R−1(x−Hθ)

}
=

1

(2π)n/2
1

|R|1/2
exp

{
−1

2
x>R−1x

}
︸ ︷︷ ︸

a(x)

×

exp
{
θ>H>R−1x

}
exp

{
−1

2
θ>H>R−1Hθ

}
︸ ︷︷ ︸

bθ(t)
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t︸︷︷︸
p×1

= H>︸︷︷︸
p×N

R−1︸︷︷︸
n×n

x︸︷︷︸
n×1

Note: t is p-dimensional and is simply a linear transformation of x.
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The Rao-Blackwell Theorem

Rao-Blackwell Theorem

Let X be a random variable with pdf p(x|θ) and let t(X) be a
sufficient statistic. Let f(x) be an estimator of θ and define the
mean-squared error

MSE(f) := E
[
‖f(X)− θ‖2

]
.

Next define g(t) := E [f(X)|t(X)] and

MSE(g) := E
[
‖g(t(X))− θ‖2

]
.

Then
MSE(g) ≤ MSE(f)

with equality iff f(X) ≡ g(t(X)) with probability one (almost
surely).
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Observations and Interpretation

1. g is a function of the sufficient statistic (and otherwise
independent of x).

2. Given any estimator f that is not a function of a sufficient
statistic, there exists a better estimator (with respect to
MSE).

3. We may restrict our search for estimators to functions of a
sufficient statistic.

4. The conditional expectation

E [f(X)|T (X)]

averages out (or removes) non-informative components in f .
We can view this as a filter that eliminates unnecessary
components of the data.
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Proof of Rao-Blackwell Theorem

(for 1-dimensional θ)

MSE(f) =E[(f(X)− θ)2]
=

ET [E[(f(X)− θ)2|T ]

smoothing

≥

ET [E[f(X)− θ|T ]2]

Jensen’s

=

ET [(g(T )− θ)2]

defn of g

=MSE(g)
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