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The generalized likelihood ratio test (GLRT) is a general
procedure for composite testing problems. The basic idea is to
compare the best model in class H1 to the best in H0, which is
formalized as follows. We have two composite hypotheses of the
form:

Hi : X ∼ pi(x|θi), θi ∈ Θi , i = 0, 1.

The parametric densities p0 and p1 need not have the same form.
The GLRT based on an observation x of X is

Λ̂(x) =

max
θ1∈Θ1

p1(x|θ1)

max
θ0∈Θ0

p0(x|θ0)

H1

≷
H0

γ,

or equivalently

log Λ̂(x)
H1

≷
H0

γ.
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Example: Signal Detection

Consider two hypotheses

H0 : X ∼ N (0, σ2In)

H1 : X ∼ N (Hθ, σ2In)

where σ2 > 0 is known, H is a known n× k matrix, and θ ∈ Rk is
unknown. The mean vector Hθ is a model for a signal that lies in
the k-dimensional subspace spanned by the columns of H (e.g., a
narrowband subspace, polynomial subspace, etc.). In other words,
the signal has the representation

s =
k∑
i=1

θihi, H = [h1, . . . , hk].

The null hypothesis is that no signal is present (noise only).
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Example: (cont.)

Log LR

log Λ(x) = − 1

2σ2
(x−Hθ)>(x−Hθ) +

1

2σ2
x>x

=
1

σ2
(θ>H>x− 1

2
θ>H>Hθ).

Since θ is unknown we can’t go further, instead we find θ that
makes x most likely:

θ̂ = arg max
θ
p(x|H1, θ)

= arg max
θ

1

(2πσ2)
k
2

e−
1

2σ2
(x−Hθ)>(x−Hθ)

= arg max
θ
− 1

2σ2
(x−Hθ)>(x−Hθ)

= arg min
θ

(x−Hθ)>(x−Hθ)

= arg min
θ

(x>x− 2θ>H>x+ θ>H>Hθ)
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Example: (cont.)

Taking the derivative with respect to θ

∂

∂θ
(x>x− 2θ>H>x+ θ>H>Hθ) = 0

⇒ 0− 2H>x+ 2H>Hθ = 0

⇒ θ̂ = (H>H)−1H>x

Now we plug θ̂ into the GLRT: θ ← θ̂

log Λ̂(x) :=
1

σ2

[
x>H(H>H)−1H>x

− 1

2
x>H(H>H)−1H>H(H>H)−1H>x

]
=

1

2σ2
x>H(H>H)−1H>x
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Example: (cont.)

Recall that the projection matrix onto the subspace is defined as
PH := H(H>H)−1H>

log Λ̂(x) =
1

2σ2
x>PHx =

1

2σ2
‖PHx‖22.

Observe that this is simply an energy detector in H: we are taking
the projection of x onto H and measuring the energy. The
expected value of this energy under H0 (noise only) is

EH0

[
‖PHX‖22

]
= kσ2,

since a fraction k/n of the total noise energy nσ2 falls into this
subspace.
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The performance of the subspace energy detector can be
quantified as follows. We choose a γ for the desired PFA:

1

σ2
x>PHx

H1

≷
H0

γ

What is the distribution of x>PHx under H0? First use the
decomposition

PH = UU>

where U ∈ Rn×k with orthonormal columns spanning columns of
H, and let y := U>x. Then

1

σ2
x>PHx =

1

σ2
x>UU>x =

1

σ2
y>y

y ∼

N (0, σ2U>U) ≡ N (0, σ2Ik×k)

yi/σ
iid∼

N (0, 1)

, i = 1, . . . , k

⇒ y>y

σ2
∼

χ2
k, chi-squared with k degrees of freedom
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GLRT and PFA
Example: (cont.)

Under H0,

1

σ2
x>PHx ∼ χ2

k =⇒ PFA = P(χ2
k > γ)

The PFA of a χ2
k distribution.
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χ2
k Distributions

χ2
k distributions, for k > 2 they all take on the same general form.

(Wikipedia)

To calculate the tails on χ2
k distributions you can look it up in the

back of a good book or use Matlab (chi2cdf(x,k), chi2inv(γ,k),
chi2cdf(x,k)). Remember the mean of a χ2

k distribution is k, so we
want to choose a γ bigger than k to produce a small PFA. 9 / 12



Wilks’ Theorem

Wilk’s Theorem (1938)

Consider a composite hypothesis testing problem

H0 : X1, X2, ..., Xn
iid∼ p(x|θ0),

where θ0,1, . . . , θ0,` ∈ R are free parameters and

θ0,`+1 = a`+1, . . . , θk = ak are fixed at the values

a`+1, . . . , ak

H1 : X1, X2, ..., Xn
iid∼ p(x|θ1), θ1 ∈ Rkare all free parameters

and the parametric density has the same form in each hypothesis.

In this case family of models in H0 is a subset of those in H1, and
we say that the hypotheses are nested. (This is a key condition
that must hold for this theorem.)
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Wilk’s Thm (cont.)

If the 1st and 2nd order derivatives of p(x|θi) with respect to θi

exist and if E
[
∂ log p(x|θi)

∂θi

]
= 0 (which guarantees that the MLE

θ̂i → θi as n→∞), then the generalized likelihood ratio statistic,
based on an observation X = (X1, . . . , Xn),

Λ̂n(X) =

max
θ1

p(x|θ1)

max
θ0

p(x|θ0)
(1)

has the following asymptotic distribution under H0:

2 log Λ̂(x)
n→∞∼ χ2

k−` i.e., 2 log Λ̂(x)
D→ χ2

k−`

Proof: (Sketch) under the conditions of the theorem, the log GLRT
tends to the log GLRT in a Gaussian setting according to the
Central Limit Theorem (CLT).
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Example: Nested Condition

H0 :xi
iid∼ N (0, 1)

H1 :xi
iid∼ N (0, σ2), i = 1, 2, . . . , n, σ2 > 0 unknown

log LR:

n∑
i=1

(
−1

2
log σ2 − x2

i

(
1

2σ2
− 1

2

))

MLE of σ2:

σ̂2 =
1

n

n∑
i=1

x2
i

log GLR under H0:

2

[∑
−1

2
log

(
1

n

n∑
i=1

x2
i

)
− x2

i

2

(
1

1
n

∑n
i=1 x

2
i

− 1

)]
n→∞∼ χ2

1
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