# 11. The Generalized Likelihood Ratio ECE 830, Spring 2014

The generalized likelihood ratio test (GLRT) is a general procedure for composite testing problems. The basic idea is to compare the best model in class  $H_1$  to the best in  $H_0$ , which is formalized as follows. We have two composite hypotheses of the form:

$$H_i: X \sim p_i(x|\theta_i), \theta_i \in \Theta_i, i = 0, 1.$$

The parametric densities  $p_0$  and  $p_1$  need not have the same form. The GLRT based on an observation x of X is

$$\widehat{\Lambda}(x) = \frac{\max_{\theta_1 \in \Theta_1} p_1(x|\theta_1)}{\max_{\theta_0 \in \Theta_0} p_0(x|\theta_0)} \underset{H_0}{\overset{H_1}{\geqslant}} \gamma,$$

or equivalently

$$\log \widehat{\Lambda}(x) \underset{H_0}{\overset{H_1}{\gtrless}} \gamma.$$

### Example: Signal Detection

Consider two hypotheses

$$H_0$$
:  $X \sim \mathcal{N}(0, \sigma^2 I_n)$   
 $H_1$ :  $X \sim \mathcal{N}(H\theta, \sigma^2 I_n)$ 

where  $\sigma^2>0$  is known, H is a known  $n\times k$  matrix, and  $\theta\in\mathbb{R}^k$  is unknown. The mean vector  $H\theta$  is a model for a signal that lies in the k-dimensional subspace spanned by the columns of H (e.g., a narrowband subspace, polynomial subspace, etc.). In other words, the signal has the representation

$$s = \sum_{i=1}^{k} \theta_i h_i, H = [h_1, \dots, h_k].$$

The null hypothesis is that no signal is present (noise only).

# Example: (cont.)

Log LR

$$\log \Lambda(x) = -\frac{1}{2\sigma^2} (x - H\theta)^\top (x - H\theta) + \frac{1}{2\sigma^2} x^\top x$$
$$= \frac{1}{\sigma^2} (\theta^\top H^\top x - \frac{1}{2} \theta^\top H^\top H\theta).$$

Since  $\theta$  is unknown we can't go further, instead we find  $\theta$  that makes x most likely:

$$\widehat{\theta} = \arg \max_{\theta} p(x|H_1, \theta)$$

$$= \arg \max_{\theta} \frac{1}{(2\pi\sigma^2)^{\frac{k}{2}}} e^{-\frac{1}{2\sigma^2}(x-H\theta)^{\top}(x-H\theta)}$$

$$= \arg \max_{\theta} -\frac{1}{2\sigma^2}(x-H\theta)^{\top}(x-H\theta)$$

$$= \arg \min_{\theta} (x-H\theta)^{\top}(x-H\theta)$$

 $= \arg\min_{\alpha} (x^{\top} x - 2\theta^{\top} H^{\top} x + \theta^{\top} H^{\top} H \theta)$ 

#### Example: (cont.)

Taking the derivative with respect to  $\theta$ 

$$\frac{\partial}{\partial \theta} (x^{\top} x - 2\theta^{\top} H^{\top} x + \theta^{\top} H^{\top} H \theta) = 0$$

$$\Rightarrow 0 - 2H^{\top} x + 2H^{\top} H \theta = 0$$

$$\Rightarrow \hat{\theta} = (H^{\top} H)^{-1} H^{\top} x$$

Now we plug  $\widehat{\theta}$  into the GLRT:  $\theta \leftarrow \widehat{\theta}$ 

$$\log \widehat{\Lambda}(x) := \frac{1}{\sigma^2} \left[ x^\top H (H^\top H)^{-1} H^\top x - \frac{1}{2} x^\top H (H^\top H)^{-1} H^\top H (H^\top H)^{-1} H^\top x \right]$$
$$= \frac{1}{2\sigma^2} x^\top H (H^\top H)^{-1} H^\top x$$

#### Example: (cont.)

Recall that the projection matrix onto the subspace is defined as  $P_H := H(H^\top H)^{-1}H^\top$ 

$$\log \widehat{\Lambda}(x) = \frac{1}{2\sigma^2} x^{\top} P_H x = \frac{1}{2\sigma^2} ||P_H x||_2^2.$$

Observe that this is simply an energy detector in H: we are taking the projection of x onto H and measuring the energy. The expected value of this energy under  $H_0$  (noise only) is

$$\mathbb{E}_{H_0}\left[\|P_H X\|_2^2\right] = k\sigma^2,$$

since a fraction k/n of the total noise energy  $n\sigma^2$  falls into this subspace.

The performance of the subspace energy detector can be quantified as follows. We choose a  $\gamma$  for the desired  $P_{FA}$ :

$$\frac{1}{\sigma^2} x^{\top} P_H x \underset{H_0}{\overset{H_1}{\gtrless}} \gamma$$

What is the distribution of  $x^{\top}P_{H}x$  under  $H_{0}$ ? First use the decomposition

$$P_H = UU^{\top}$$

where  $U \in \mathbb{R}^{n \times k}$  with orthonormal columns spanning columns of H, and let  $y := U^{\top}x$ . Then

$$\frac{1}{\sigma^2} x^{\top} P_H x = y \sim \\ y_i / \sigma \stackrel{iid}{\sim} , i = 1, \dots, k$$
$$\Rightarrow \frac{y^{\top} y}{\sigma^2} \sim$$

# **GLRT** and $P_{FA}$

## Example: (cont.)

Under  $H_0$ ,

$$\frac{1}{\sigma^2} x^{\top} P_H x \sim \chi_k^2 \qquad \Longrightarrow \qquad P_{FA} = \mathbb{P}(\chi_k^2 > \gamma)$$



The  $P_{FA}$  of a  $\chi^2_k$  distribution.

# $\chi^2_k$ Distributions



 $\chi_k^2$  distributions, for k>2 they all take on the same general form. (Wikipedia)

To calculate the tails on  $\chi^2_k$  distributions you can look it up in the back of a good book or use Matlab (chi2cdf(x,k), chi2inv( $\gamma$ ,k), chi2cdf(x,k)). Remember the mean of a  $\chi^2_k$  distribution is k, so we want to choose a  $\gamma$  bigger than k to produce a small  $P_{FA}$ .

9/12

### Wilks' Theorem

## Wilk's Theorem (1938)

Consider a composite hypothesis testing problem

$$H_0 \quad : \quad X_1, X_2, ..., X_n \overset{iid}{\sim} p(x|\theta_0),$$
 where  $\theta_{0,1}, \ldots, \theta_{0,\ell} \in \mathbb{R}$  are free parameters and  $\theta_{0,\ell+1} = a_{\ell+1}, \ldots, \theta_k = a_k$  are fixed at the values  $a_{\ell+1}, \ldots, a_k$ 

 $H_1: X_1, X_2, ..., X_n \stackrel{iid}{\sim} p(x|\theta_1), \theta_1 \in \mathbb{R}^k$  are all free parameters

and the parametric density has the same form in each hypothesis.

In this case family of models in  $H_0$  is a subset of those in  $H_1$ , and we say that the hypotheses are **nested**. (This is a key condition that must hold for this theorem.)

#### Wilk's Thm (cont.)

If the  $1^{\mathrm{st}}$  and  $2^{\mathrm{nd}}$  order derivatives of  $p(x|\theta_i)$  with respect to  $\theta_i$  exist and if  $\mathbb{E}\left[\frac{\partial \log p(x|\theta_i)}{\partial \theta_i}\right] = 0$  (which guarantees that the MLE  $\widehat{\theta}_i \to \theta_i$  as  $n \to \infty$ ), then the generalized likelihood ratio statistic, based on an observation  $X = (X_1, \dots, X_n)$ ,

$$\widehat{\Lambda}_n(X) = \frac{\max_{\theta_1} p(x|\theta_1)}{\max_{\theta_0} p(x|\theta_0)}$$
 (1)

has the following asymptotic distribution under  $H_0$ :

$$2\log \widehat{\Lambda}(x) \overset{n \to \infty}{\sim} \chi^2_{k-\ell} \qquad \textit{i.e.,} \qquad 2\log \widehat{\Lambda}(x) \overset{D}{\to} \chi^2_{k-\ell}$$

<u>Proof:</u> (Sketch) under the conditions of the theorem, the log GLRT tends to the log GLRT in a Gaussian setting according to the Central Limit Theorem (CLT).

#### Example: Nested Condition

$$H_0: x_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$$

$$H_1: x_i \stackrel{iid}{\sim} \mathcal{N}(0,\sigma^2), i = 1, 2, \dots, n, \sigma^2 > 0 \text{ unknown}$$

log LR:

MLE of  $\sigma^2$ :

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n x_i^2$$

 $\log$  GLR under  $H_0$ :