Projects

Other ideas
- nonlinear extensions of PCA
 - kernel PCA
 - locally linear embeddings
 - non-negative matrix factorization
 - autoencoder NN's

Other ideas
- sparse weights or small # of hidden nodes?
- data augmentation
- linear activation?
 (autoencoder NN with linear activation = PCA)

- LASSO
 - group LASSO
 - elastic net (LASSO + Ridge)
 - multi-task learning.

- Low-rank tensors
minimize \(w \bullet \ell(w) + \lambda \gamma(w) \)

subject to

\[f(w) \]

\[\hat{w} = \arg\min_w f(w) \]

assume \(f(w) = \sum_{i=1}^n f_i(w) \)

\[e.g. \quad f(w) = \|y - Xw\|_2^2 \]
\[= \sum_{i} (y_i - x_i^T w)^2 \]
\[\Rightarrow f_i(w) = (y_i - x_i^T w)^2 \]

SGD:

- At iteration \(k \), choose \(i_k \in \{1, \ldots, n\} \)

\[\hat{w}^{(k+1)} = \hat{w}^{(k)} - \frac{\tau}{2} \nabla f_{i_k}^{(k)}(\hat{w}^{(k)}) \]

most commonly: \(i_k \sim \text{uniformly at random} \)

for \(1, 2, \ldots, n \)
A. cyclic \(i_k = k \mod n \)

 if \(n = 3 \), \(i_k \)'s: 1, 2, 3, 1, 2, 3, ...

B. permutation

\[
i_k \text{'s: } 3, 1, 2, 1, 3, 2, 2, 1, 3
\]

epoch 1 epoch 2

C. \(i_k \)'s unit at random

\[
i_k \text{'s: } 1, 1, 1, 1, 3, 1, 2, 2, 3, 1
\]

if \(i_k \)'s are uniform at random,

\[
E[f_{i_k}] = \frac{f}{n}
\]
Ex: \(f(w) = \|y - Xw\|_2^2 + \lambda \|w\|_2^2 \)

\[
= \sum_{i=1}^{n} \left[(y_i - x_i^T w)^2 + \frac{\lambda}{n} \|w\|_2^2 \right]
\]

\(f_i(w) \)

\(\nabla f_i(w) = -2(y_i - x_i^T w) x_i + \frac{2\lambda}{n} w \)

SGD: \(\hat{w}(k+1) = \hat{w}(k) - \frac{\beta}{4} \left[-(y_i - x_i^T \hat{w}(k)) x_i + \frac{\lambda}{n} \hat{w}(k) \right] \)
can replace gradients with subgradients:

Recall: if f is convex and differentiable:
$$f(u) \geq f(w) + (u-w)^T \nabla f(w)$$

if f is convex but not differentiable, then v is a subgradient of f at w if
$$f(u) \geq f(w) + (u-w)^T v$$

set of subgradients at w is called "differential set" denoted $\partial f(w)$
write $v \in \partial f(w)$
e.g., \(r(w) = \|w\|_1 = \sum_{j=1}^{p} |w_j| \)

for \(w_j \neq 0 \), \(|w_j| \) is differentiable
derivative is \(\text{sign}(w_j) \)

for \(w_j = 0 \), then \(v_j \in [-1, +1] \)

for \(v \in \text{arg}(r(w)) \)

then \(v_j = \begin{cases} \text{sign}(w_j) & \text{if } w_j \neq 0 \\ \in [-1, +1] & \text{if } w_j = 0 \end{cases} \)

popular choice: \(v_j = \begin{cases} \text{sign}(w_j) & \text{if } w_j \neq 0 \\ 0 & \text{if } w_j = 0 \end{cases} = \text{"sign}(w)\)"
\[E_{2} \quad \text{SGD:} \quad f(w) = \|y - Xw\|_2^2 + \lambda \|w\|_1 \quad \text{(LASSO)} \]

\[= \sum_{i=1}^{n} \left[(y_i - x_i^T w)^2 + \frac{\lambda}{n} \|w\|_1 \right] \]

\[f_i(w) \]

Let \(v = -2(y_i - x_i^T w) x_i + \frac{\lambda}{n} \text{sign}(w) \)

SGD: \(\hat{w}^{(k+1)} = \hat{w}^{(k)} - \frac{\lambda}{2} (-v_i) \)

\[= \hat{w}^{(k)} + \frac{1}{T}(y_i - x_i^T \hat{w}^{(k)}) - \frac{T \lambda}{2n} \text{sign}(\hat{w}^{(k)}) \)
$$h_m = \sigma \left(\sum_{j=1}^{P} X_j W_{m,j} \right)$$

$$y_k = \sigma \left(\sum_{m=1}^{M} h_m V_{k,m} \right)$$
\[y = x^T w \]

\[y = \sigma(x^T w) \]

- \(\sigma(z) = \max(0, z) = \text{ReLU} \)
- \(\sigma(z) = \text{sign}(z) \in [-1, 0, +1] \)
- \(\sigma(z) = \frac{1}{1 + e^{-z}} \in [0, 1] \)